
High Volume Updates in Hive

Owen O'Malley

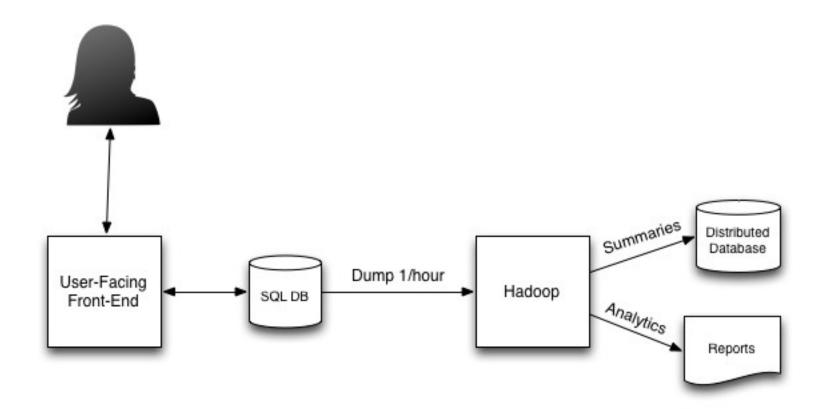
owen@hortonworks.com

@owen_omalley

June 2012

Who Am I?

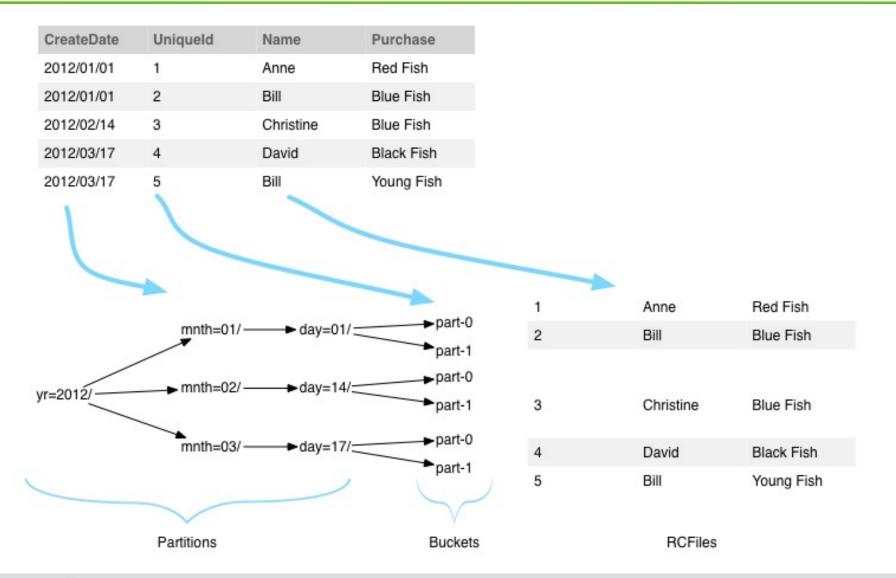
- Was working in Yahoo Search in Jan 2005, when we decided to work on Hadoop.
- My first patch went in before it was Hadoop.
- Was the first committer added to the project.
- Was the first Apache VP of Hadoop.
- Won the sort benchmark in 2008 & 2009.
- Was the tech lead for:
 - · MapReduce
 - · Security
- Now I'm working on Hive



A Data Flood

- The customer has:
 - Business critical
 - 1 TB/day of customer data
 - Need to keep all historical data
 - Data size increasing exponentially
 - Doubles year over year
 - Lots of derived reports
 - \cdot 15% of traffic is updates to old data

The Dataflow



The Approach

- Picked Hive
 - · Wanted a higher-level query language
 - Hive's HQL lowers learning curve
 - But, they have those edits & deletes...
- Hive doesn't update things well
 - Reflects the capabilities of HDFS
 - · Can add records
 - · Can overwrite partitions

Hive Table Layout

Design

- Hive allows tables to specify an InputFormat and OutputFormat
- We can store each bucket as a base file and a sequential set of edit files.
- To enable efficient reading of a bucket, the base and edits files must be sorted.
- Tag each edit file with a "timestamp" to support repeatable reads.
- Edits must be compacted eventually.

Stitching Buckets Together

Uniqueld	Name	Purcha	ase
1	Anne	Red Fi	sh
2	Bill	Blue F	ish
25	Christine	Blue F	ish
27	David	Black F	Fish
30	Bill	Young	Fish
pdate 1			
Op	Uniqueld	Name	Purchase
I	1	Ann	Red Fish
	26	Joe	Old Fish
)	30	NULL	NULL
pdate 2			
)p	Uniqueld	Name	Purchase
	1	Anne	Star
	25	NULL	NULL

Limitations

- Requires active component to manage compaction.
 - Compactions should be scheduled for off-peak hours.
 - Compaction of each partition is independent.
- Requires table be sorted.
- Must use consistent bucketing.

Additional Challenges from Hive

- Hive serializes before the OutputFormat
- Hive defines its own OutputFormat
- Hive forces its own OutputCommitter
- Dynamic Partitions hold open a lot of files
 - · Snappy used too much memory
- RCFiles compress well, but no index or bloom filters
- Fixed bucketing across partitions

Why not Hbase?

- Good
 - Handles compaction for us
 - Files are indexed with Bloom filters
- Bad
 - Push down filters only recently done
 - HBase has only a single key
 - Requires key hashing to spread load
 - Tuned for real-time access

A Set Back

- After several months of data loading:
 - · Accidental "hadoop fs -rmr"
 - · Deleted 450 TB
- Good
 - Shutdown NameNode quickly
 - Copied HDFS fsimage & edits
- Bad
 - Trash wasn't turned on
 - Brought NameNode back up
 - Didn't shutdown other servers

Conclusion

- Still in Development
 - The approach is scalable
 - Naturally bumps still hidden in the dark
- Testing on samples as data reloads
- Expect to complete end to end testing in a couple months

Thank You!

Questions & Answers

© Hortonworks Inc. 2012