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How to build a planet-scale serializable database

Build clocks with bounded absolute error,
and integrate them with timestamp assignment:

• Ensure timestamp total order respects transaction partial order

• Offer efficient serializable queries over everything



Spanner

• Descendant of Bigtable, successor to Megastore

• Scalable, global, Paxos-replicated SQL database

• Geographic partitioning

 Fluid: online data moves

 Hidden: no effect on semantics



Spanner: why?

Goal: building rich apps easy at Google scale

Megastore experience

• Replicated ACID transactions

• Performance, lack of query language, rigid partitioning

Bigtable experience

• Scalability, throughput 

• Eventual consistency difficult with cross-entity invariants



Spanner: data model (simplified)



Spanner: physical representation

Customer.ID.1.Name@11 → Alice
Customer.ID.1.Name@10 → Alize
Customer.ID.1.Region@10 → US
Customer.ID.1.Order.ID.100.Product@20 → Camera
Customer.ID.2.Name@5 → Bob



Spanner: concurrency

Default: serializability

• Strict two-phase locking for read-modify-write transactions

 Big performance hit (two-phase commit) if spans partitions

• Snapshot isolation (no locks) for read-only transactions

 Small performance hit (timestamp negotiation) if spans partitions

Opt-in: serialize read in the past

• Consistent MapReduce over all data

• Boundedly-stale reads (useful at lagging replicas)



What guarantees do we want?
… coming up: how we get them at reasonable cost.



Preserving commit order: example schema



Preserving commit order



Snapshot MapReduce and queries

Initial state

T1@ts1 INSERT INTO ads VALUES (2, “elkhound puppies”)

T2@ts2 INSERT INTO impressions VALUES (US, 2PM, 2)



Legal transaction orderings



Linearizability (multiprocessing term)

Equivalent to some serial order

Can't commute commit order: system preserves happens-before 
relationship among transactions

• even when there's no detectable dependency

• even across machines



Options for Scaling

Lots of WAN communication

• Include all partitions in every transaction

• Centralized timestamp oracle

No extra communication

• Propagate timestamp through every external system & protocol (Lamport 
clocks)

• Distributed timestamp oracle



Options for Scaling

Lots of WAN communication

• Include all partitions in every transaction

• Centralized timestamp oracle

No extra communication

• Propagate timestamp through every external system & protocol (Lamport 
clocks)

• Distributed timestamp oracle

 TrueTime: now() = {time, epsilon} derived from GPS, backed up by atomic 
oscillators



What guarantees do we want,

… and how we get them.



Celestial navigation



TrueTime



TrueTime



TrueTime: Marzullo's algorithm (also used in NTP)



TrueTime → write timestamps

• Given write transactions A and B, if A happens-before B, then
timestamp(A) < timestamp(B) even if A and B have no partitions in common.

• A happens-before B if its effects become visible before B begins, in real time.

 Visible means acked to client, or updates applied at some replica.

 Begins means first request arrived at Spanner server.

• Ensures serializability of future snapshot reads at arbitrary timestamps.



TrueTime → write timestamps



Why this works



When this costs something



TrueTime epsilon

Sawtooth function from 1-7ms in existing system

Slope: oscillator error assumptions

Minimum: latency to time masters



Reducing TrueTime epsilon

Poll time masters more often (currently every 30s)

Poll at high QoS

• Must enforce even in kernel

Record timestamps in NIC driver

Buy better oscillators

… and watch out for kernel bugs!



•Spanner: distributed database
•Concurrency properties: linearizability
•TrueTime: GPS and atomic oscillators
•TrueTime intervals → write timestamps
•So how do we read?



Kinds of read

• Within read-modify-write

 Acquire locks in lock manager at Paxos leader(s)

• “Strong” reads

 Spanner picks timestamp, reads at timestamp

• Boundedly-stale reads

 Spanner picks largest committed timestamp, within staleness bounds

• MapReduce / batch read

 Client picks timestamp



Timestamps for strong read

Using TrueTime

• timestamp = now().max

Using commit history

• Remember commit timestamps from recent writes

• Must declare “scope” up front

 trivial for stand-alone queries

 or, “orders from user alloyd”

• Complicated by prepared distributed transactions



Principles for effective use

Still design schema for data locality

• Example: try to put customer and orders in same partition; big users span 
partitions

Design app for correctness

Relax semantics for carefully audited high-traffic queries



First big user: F1

Migrated revenue-critical sharded MySQL instance to Spanner

Substantial influence on Spanner data model

Slides from SIGMOD 2012 talk online



Evolution of data model

1. Distributed filesystem metaphor; directory was unit of geographic placement

2. Added structured keys to directory and filenames

3. Made Spanner a hierarchical “store for protocol buffers”

(Meanwhile, started work on SQL engine)

4. Watched F1 build relational schemas atop Spanner → moved to a relational 
data model



Examples of ongoing work

Polishing SQL engine

• Restartable SQL queries across server versions (!)

Hardening

• Finer control over memory usage

• Finer-grained CPU scheduling

SI-based “strong” reads

Scaling to large numbers of replicas per Paxos group (partition)



Thanks!
Questions?
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