
Building Spanner
Better clocks → stronger semantics

Alex Lloyd

Senior Staff Software Engineer



How to build a planet-scale serializable database

Build clocks with bounded absolute error,
and integrate them with timestamp assignment:

• Ensure timestamp total order respects transaction partial order

• Offer efficient serializable queries over everything



Spanner

• Descendant of Bigtable, successor to Megastore

• Scalable, global, Paxos-replicated SQL database

• Geographic partitioning

 Fluid: online data moves

 Hidden: no effect on semantics



Spanner: why?

Goal: building rich apps easy at Google scale

Megastore experience

• Replicated ACID transactions

• Performance, lack of query language, rigid partitioning

Bigtable experience

• Scalability, throughput 

• Eventual consistency difficult with cross-entity invariants



Spanner: data model (simplified)



Spanner: physical representation

Customer.ID.1.Name@11 → Alice
Customer.ID.1.Name@10 → Alize
Customer.ID.1.Region@10 → US
Customer.ID.1.Order.ID.100.Product@20 → Camera
Customer.ID.2.Name@5 → Bob



Spanner: concurrency

Default: serializability

• Strict two-phase locking for read-modify-write transactions

 Big performance hit (two-phase commit) if spans partitions

• Snapshot isolation (no locks) for read-only transactions

 Small performance hit (timestamp negotiation) if spans partitions

Opt-in: serialize read in the past

• Consistent MapReduce over all data

• Boundedly-stale reads (useful at lagging replicas)



What guarantees do we want?
… coming up: how we get them at reasonable cost.



Preserving commit order: example schema



Preserving commit order



Snapshot MapReduce and queries

Initial state

T1@ts1 INSERT INTO ads VALUES (2, “elkhound puppies”)

T2@ts2 INSERT INTO impressions VALUES (US, 2PM, 2)



Legal transaction orderings



Linearizability (multiprocessing term)

Equivalent to some serial order

Can't commute commit order: system preserves happens-before 
relationship among transactions

• even when there's no detectable dependency

• even across machines



Options for Scaling

Lots of WAN communication

• Include all partitions in every transaction

• Centralized timestamp oracle

No extra communication

• Propagate timestamp through every external system & protocol (Lamport 
clocks)

• Distributed timestamp oracle



Options for Scaling

Lots of WAN communication

• Include all partitions in every transaction

• Centralized timestamp oracle

No extra communication

• Propagate timestamp through every external system & protocol (Lamport 
clocks)

• Distributed timestamp oracle

 TrueTime: now() = {time, epsilon} derived from GPS, backed up by atomic 
oscillators



What guarantees do we want,

… and how we get them.



Celestial navigation



TrueTime



TrueTime



TrueTime: Marzullo's algorithm (also used in NTP)



TrueTime → write timestamps

• Given write transactions A and B, if A happens-before B, then
timestamp(A) < timestamp(B) even if A and B have no partitions in common.

• A happens-before B if its effects become visible before B begins, in real time.

 Visible means acked to client, or updates applied at some replica.

 Begins means first request arrived at Spanner server.

• Ensures serializability of future snapshot reads at arbitrary timestamps.



TrueTime → write timestamps



Why this works



When this costs something



TrueTime epsilon

Sawtooth function from 1-7ms in existing system

Slope: oscillator error assumptions

Minimum: latency to time masters



Reducing TrueTime epsilon

Poll time masters more often (currently every 30s)

Poll at high QoS

• Must enforce even in kernel

Record timestamps in NIC driver

Buy better oscillators

… and watch out for kernel bugs!



•Spanner: distributed database
•Concurrency properties: linearizability
•TrueTime: GPS and atomic oscillators
•TrueTime intervals → write timestamps
•So how do we read?



Kinds of read

• Within read-modify-write

 Acquire locks in lock manager at Paxos leader(s)

• “Strong” reads

 Spanner picks timestamp, reads at timestamp

• Boundedly-stale reads

 Spanner picks largest committed timestamp, within staleness bounds

• MapReduce / batch read

 Client picks timestamp



Timestamps for strong read

Using TrueTime

• timestamp = now().max

Using commit history

• Remember commit timestamps from recent writes

• Must declare “scope” up front

 trivial for stand-alone queries

 or, “orders from user alloyd”

• Complicated by prepared distributed transactions



Principles for effective use

Still design schema for data locality

• Example: try to put customer and orders in same partition; big users span 
partitions

Design app for correctness

Relax semantics for carefully audited high-traffic queries



First big user: F1

Migrated revenue-critical sharded MySQL instance to Spanner

Substantial influence on Spanner data model

Slides from SIGMOD 2012 talk online



Evolution of data model

1. Distributed filesystem metaphor; directory was unit of geographic placement

2. Added structured keys to directory and filenames

3. Made Spanner a hierarchical “store for protocol buffers”

(Meanwhile, started work on SQL engine)

4. Watched F1 build relational schemas atop Spanner → moved to a relational 
data model



Examples of ongoing work

Polishing SQL engine

• Restartable SQL queries across server versions (!)

Hardening

• Finer control over memory usage

• Finer-grained CPU scheduling

SI-based “strong” reads

Scaling to large numbers of replicas per Paxos group (partition)



Thanks!
Questions?


	Preso title goes here
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

