Updateable fields in Lucene

and other Codec applications

Andrzej Biatecki

ab@lucidimagination.com

Uranja
Berlin

Agenda

= Codec API primer

= Some interesting Codec applications
« TeeCodec and TeeDirectory
* FilteringCodec
« Single-pass IndexSplitter

* Field-level updates in Lucene
« Current document-level update design
* Proposed “stacked” design
 Implementation details and status
* Limitations

IIIIIIIIIII

About the speaker

» Lucene user since 2003 (1.2-dev...)
» Created Luke — the Lucene Index Toolbox

= Apache Nutch, Hadoop, Solr committer, Lucene
PMC member, ASF member

= LucidWorks developer

IIIIIIIIIII

Codec API

IIIIIIIIIII

Data encoding and file formats

= Lucene 3.x and before
Tuned to pre-defined data types

Combinations of delta encoding and variable-
length byte encodings

Hardcoded choices — impossible to customize

Dependencies on specific file-system behaviors
(e.g. seek back & overwrite)

 Data coding happened in many places

= | ucene 4 and onwards

« All data writing and reading abstracted from data
encoding (file formats)

* Highly customizable, easy to use API

IIIIIIIIIII

Codec API

"= Codec implementations provide “formats”

 SegmentinfoFormat, PostingsFormat,
StoredFieldsFormat, TermVectorFormat,
DocValuesFormat

» Formats provide consumers (to write to) and
producers (to read from)

 FieldsConsumer, TermsConsumer,

PostingsConsumer, StoredFieldsWriter /
StoredFieldsReader ...

= Consumers and producers offer item-level API
(e.g. to read terms, postings, stored fields, etc)

IIIIIIIIIII

Codec Coding Craziness!

= Many new data encoding schemas have been
implemented

* Lucene40, Pulsing, Appending
= Still many more on the way!

 PForDelta, intblock Simple 9/16, VSEncoding,
Bloom-Filter-ed, etc ...

» Lucene became an excellent platform for IR
research and experimentation

- Easy to implement your own index format

IIIIIIIIIII

Some interesting Codec
applications

IIIIIIIIIII

TeeCodec

= [Use cases:

« Copy of index in real-time, with different data
encoding / compression

» TeeCodec writes the same index data to many
locations simultaneously
 Map<Directory,Codec> outputs

 The same fields / terms / postings written to
multiple outputs, using possibly different Codec-s

» TeeDirectory replicates the stuff not covered in
Codec API (e.g. segments.gen)

lucid 10

IIIIIIIIIII

FilteringCodec

= Use case:
« Discard on-the-fly some less useful index data

= Simple boolean decisions to pass / skip:
« Stored Fields (add / skip / modify fields content)

* Indexed Fields (all data related to a field, i.e.
terms + postings)

 Terms (all postings for a term)
* Postings (some postings for a terms)
« Payloads (add / skip / modify payloads for term's
postings)
= Qutput: Directory + Codec

IIIIIIIIIII

Example: index pruning

= On-the-fly pruning, i.e. no post-processing

IndexWriter
TeeCodec [—>| FilteringCodec ?
v

HEREHIConEE IndexReader | | IndexReader

N N

v

AppendingCodec > SSD <

> HDFS <

lucid 12

IIIIIIIIIII

Example: Single-pass IndexSplitter

= Each FilteringCodec selects a subset of data
* Not necessarily disjoint!

IndexWriter
TeeCodec
FilteringCodec 1 FilteringCodec 2 FilteringCodec 3
v v v
Lucene40Codec Lucene40Codec Lucene40Codec
Directory 1 Directory 2 Directory 3

IIIIIIIIIII

Field-level index updates

IIIIIIIIIII

Current index update design

= Document-level “update” is really a “delete + add”
* Old document ID* is hidden via “liveDocs” bitset
 Term and collections statistics wrong for a time

 Only a segment merge actually removes deleted
document’s data (stored fields, postings, etc)
= And fixes term / collection statistics

* New document is added to a new segment, with a
different ID*

* Internal document ID (segment scope) — ephemeral int, not preserved in segment merges

lucid 19

IIIIIIIIIII

Problems with the current design

= Document-level
» Users have to store all fields
= All indexed fields have to be analyzed again

= Costly operation for large documents with small
frequent updates

= Some workarounds exist:

- ParallelReader with large static index + small
dynamic index — tricky to sync internals IDs!

« ExternalFileField — simple float values, sorted in
memory to match doc ID-s

« Application-level join between indexes or index + db

lucid 10

IIIIIIIIIII

Let’s change it

IIIIIIIIIII

“Stacked” field-level updates

= Per-field updates, both stored and inverted data
» Updated field data is “stacked” on top of old data
= Old data is “covered” by the updates

= Paper by Ercegovac, Josifovski, Li et al

« “Supporting Sub-Document Updates and Queries
in an Inverted Index” CIKM ‘08

Xy yZ
I
xR xR I
ab | bc | cd | de | ef ab | xy | cd |yz | ef

IIIIIIIIIII

Proposed “stacked” field updates

* Field updates represented as new documents

« Contain only updated field values
» Additional stored field keeps the original doc ID? OR
» Change & sort the ID-s to match the main segment?

» Updates are written as separate segments

* On reading, data from the main and the “stacked”
segments is somehow merged on the fly

 Internal ID-s have to be matched for the join

» QOriginal ID from the main index
» Re-mapped, or identical ID from the stacked segment?

* Older data replaced with the new data from the
“stacked” segments

» Re-use existing APIs when possible

lucid 19

IIIIIIIIIII

NOTE: work in progress

= This is a work In progress
= Very early stage

= DO NOT expect this to
work today — it doesn’t!

* It’s a car frame + a pile of
loose parts

IIIIIIIIIII

Writing “stacked” updates

IIIIIIIIIII

Writing “stacked” updates

» Updates are regular Lucene Document-s
* With the added “original ID” (oid) stored field
* OR re-sort to match internal IDs of the main segment?

= |nitial design
» Additional IndexWriter-s / DocumentWriter-s — UpdateWriter-s

« Create regular Lucene segments
» E.g. using different namespace (u_0£5 for updates of _0£5)

* Flush needs to be synced with the main IndexWriter

« Segmentinfos modified to record references to the update
segments

 Segment merging in main index closes UpdateWriter-s
= Convenience methods in IndexWriter
* IW.updateDocument(int n, Document newFields)

* End result: additional segment(s) containing updates

lucid 2

IMAGINATION

... o be continued ...

= |nteractions between the
UpdateW and the main IW

= Support multiple stacked
segments

= Evaluate strategies
 Map ID-s on reading, OR
 Change & sort ID-s on write

= Support NRT

IIIIIIIIIII

Reading “stacked” updates

IIIIIIIIIII

Combining updates with originals

= Updates may contain single or multiple fields
 Need to keep track what updated field is where

= Multiple updates of the same document
« Last update should win

= |[D-s in the updates != ID-s in the main segment!

 Need a mapping structure between internal ID-s
 OR: Sort updates so that ID-s match

* |D mapping — costs to retrieve
= |ID sorting — costs to create

* Initial simplification: max. 1 update segment for 1 main segment

lucid 25

IIIIIIIIIII

Unsorted “stacked” updates

Runtime |ID re-mapping

IIIIIIIIIII

Unsorted updates — ID mismatch

= Resolve ID-s at runtime:
» Use stored original ID-s (newlD - oldID)
 Invert the relation and sort (oldID - newlD)

= Use a (sparse!) per-field map of oldID = newlD
for lookup and translation
E.g. when iterating over docs:

* Foreach ID in old ID-s:
= Check if oldID exists in updates
= jfexists, translate to newlD and return the newlD’s data

IIIIIIIIIII

27

Original segment

id

f1

Stacked stored fields

f2

10

abba

c-b

11

b-ad

12

ca--d

13

da-da

Funny looking field values?
This is just to later illustrate the
tokenization — one character
becomes one token, and then
it becomes one index term.

* Any non-inverted fields
« Stored fields, norms or docValues

lucid

IMAGINATION

id

f1

Stacked stored fields

Original segment

f2

10

abba c-b

11

b-ad -b-c

12

ca--d | c-cC

13

da-da | b--b

“Updates” segment

id oid

f1 f2

12

ba-a

10

ac -—-cb

f3

13

dab

ad-c

—-ee

? S

» Several versions of a field
* Fields spread over several
updates (documents)

* Internal IDs don’t match!
 Store the original ID (oid)

IIIIIII

TION

id

f1

Stacked stored fields

Original segment

f2

10

abba

c-b

11

b-ad

12

ca--d

13

da-da

“Updates” segment

id

oid f1

f2

0

12 | ba-a

1

10 | ac

--cb

f3

Build a map from original
IDs to the IDs of updates
- sort by oid

One sparse map per field
Latest field value wins

Fast lookup needed

in memory?

ID per-field mapping

13

13 | dab

2
3
4

10 | ad-c

—-ee

\\) last update wins!

f1 f2 3
10| 4 | 1
11
12| 0
13 | 3 2

lucid

IMAGINATION

30

id

f1

f2

Stacked stored fields

Original segment

10

abba

c-b

11

b-ad

12

ca--d

13

da-da

“Updates” segment

“Stacked” segment

id 1 f2 f3
10 | ad-c | --cb

11 | b-ad | -b-c

12 | ba-a | c-c

13 | dab b--b | -ee

ID per-field mapping

id oid f1 f2 f3

0 | 12 | ba-a

1 110 | ag>=_ | --cb

2 | 13 -ee
3 |13 | dab

4 110 | ad-c

f1 f2 3
10| 4 | 1
11
12| 0
13 | 3 2

Ké last update wins!

- discard 1:f1

lucid

IMAGINATION

31

Stacked stored fields — lookup

id f1 f2 id f1 f2
10 | abba c-b 10 | ad-c --cb
id oid f1 f2 1 e

1 110 | ag>=_| --cb

10| 4 | 1 ID per-field mapping

last update wins! - discard 1:f1

4 | 10 | ad-c

» |nitialize mapping table from the “updates” segment
* Doc 1 field1 (the first update of oid 10) is obsolete — discard
» Get stored fields for doc 10:
 Check the mapping table what fields are updated
* Retrieve field1 from doc 4 and field 2 from doc 1 in “updates”
NOTE: major cost of this approach - random seek!

* Retrieve any other original fields from the main segment for
doc 10

« Return a combined iterator of field values

lucid 2

IMAGINATION

Stacked inverted fields

Original segment

id / postings » |nverted fields have:
terms 10 | 11 12 | 13
a 03] 2 [114 Fields
b|12] 0 .
M1 0 1 * Term dictionary + term freqgs
d 3 [4 |0, :
ol 21 13 Document frequencies
cl 0 13 102 Positions
0. £1: abba « Attributes (offsets, payloads, ...)
f2: c-b = ...and norms, but norms are non-
B 11. f1: b-ad inverted == like stored fields
+ f2: -b-c
()
. 12. fl: ca--d . ,
. f2: c-c = Updates should overlay “cells”™ for
13. £1: da-da each term at <field,term,doc>

 Positions, attributes

lucid Discard all old data from the cell=

IIIIIIIIIII

Stacked inverted fields

Original segment

id / postings
terms 10 | 11] 12 | 13

a| 03] 2 1 1,4
£1 2 1,21 0 5

d 3 4 | 0,3

bl 2 | 1 1,3 NI
fbl 2Ll Documents containing

updates of inverted fields:

“Updates” segment

12 10 13 13 10 0. f1: ba-a (oid: 12)
t
e TR I S B 1. £f1: ac (oid: 10)
e 1 3 2. £3: -ee (oid: 13)
d 0 1)))
o | b 3 3. f1: dab (oid: 13)
C 2
3 e 12 4. fl: ad-c (oi1d: 10)

lucid 4

IIIIIIIIIII

Stacked inverted fields

Original segment

oms (96 T4 LT = |D mapping table:

a1 9342 1114 « The same sparse table!
f1 c | o] + Take the latest postings
BT Z T T3 at the new doc ID

cl o] 302 Ignore original postings

at the original doc ID
“Updates” segment

12 10 13 13 10

ID per-field mapping

terms 0 1 2 3 4
al|13]| 0 1 0 f1 f2 f3
bl O | 2 10| 4 | 1
f1 17 1 3
d 0 1 1 K_) last update wins!
2 b 3 12 | 0 - discard 1:f1
C 2
3o 12 13| 3 2

lucid 3

IMAGINATION

Stacked inverted fields

Original segment

oms (96 T4 LT = |D mapping table:

a1 9342 1114 « The same sparse table!
f1 c | o] + Take the latest postings
BT Z T T3 at the new doc ID

cl o] 302 Ignore original postings

at the original doc ID
“Updates” segment

12 10 13 13 10

ID per-field mapping

terms 0 1 2 3 4
al 1.3 1 0 f1 f2 13
bl O § | 2 10| 4 | 1
f1 ¢ § 3
d 0 1 1 K_) last update wins!
2 b 3 12 | 0 - discard 1:f1
C 2
3o 12 13 | 3 2

lucid %

IMAGINATION

Stacked inverted fields

Original segment
id / postings

terms 10 11 12 | 13
al03]| 2 1 1,4
b | 1,2 0

f1 c 0
d 3 4 0,3

f2 b 2 1 1,3
C 0 3 0,2

“Updates” segment

id / postings
terms 10 | 11 12 | 13
al| 0 2 1,3 1
b | »@|[o | 0| 2
f1 c | 3 >~
d| 1 DA
f2 b 3 1 1,3
c| 2 3 |10,2
f3] e 1,2

ID per-field mapping

f1 f2 3
10| 4 | 1

12 10 13 13 10
terms 0 1 2 3 4
al 13 % 1 0
b| 0 2
f1 C 3
d é 0 1
2 b 3
C 2
f3] e 1,2

12| 0

13 | 3 2

11 Ké last update wins!

- discard 1:f1

lucid

IMAGINATION

Stacked inverted fields — lookup

o TermsEnum and DocsEnum need a

merged list of terms and a merged

= Re-use mapping table for the

O |T| [0 T

0
22 list of id-s per term *>
1
3
2

f1

“updates” segment

» [terate over posting list for “f1:a”
 Check both lists!

 ID 10: present in the mappings,
discard original in-doc postings
f2 = |D not present in the mappings =2 return

1 original in-doc postings

10
al| 03
b |12
f1 [f1
d
fol bl 2 f2
C 0
1 | 4
a ?é 0
i .
d ;g 1 ._)10
21013
C 2

* Retrieve new postings from
<f1,a,doc4> in “updates”

NOTE: major cost — random seek!
 Advance to the next doc ID

“lucid

IMAGINATION

38

Implementation details

» Segmentinfos extended to keep names of
“stacked” segments

- “Stacked” segments in a different namespace

» Stacked Codec *Producers that combine & remap
data

» SegmentReader/SegmentCoreReaders modified

 Check for and open a “stacked” SegmentReader
 Read and construct the ID mapping table

* Create stacked Codec *Producers initialized with:
» QOriginal format *Producers
» Stacked format *Producers
= The ID mapping table

lucid a0

IIIIIIIIIII

Merged fields

* Field lists merge easily
 Trivial, very little data to cache & merge

» StoredFieldsProducer merges easily

= However, TermsEnum and DocsEnum
enumerators need more complex handling ...

IIIIIIIIIII

40

Leapfrog enumerators

* Terms and postings have to be merged
 But we don’t want to fully read all data!

» Use “leapfrog” enumeration instead
* INIT: advance both main and stacked enum

* Return from the smaller, and keep advancing &
returning from the smaller until it reaches (or
exceeds) the current value from the larger

 If values are equal then merge the data — again, in
a leapfrog fashion; advance both
= Similar to MultiTermsEnum but simpler

P

lucid .

IIIIIIIIIII

Segment merging

* Merging segments with “stacked” updates is trivial
because ...

« All Codec enumerators already present a unified
view of data!

= Just delete both the main and the “stacked”
segment after a merge is completed
 Updates are already rolled in into the new segment

lucid 2

IIIIIIIIIII

Limitations

= Search-time costs
 Mapping table consumes memory
« Overheads of merging postings and field values
 Many random seeks in “stacked” segments due to
oldID - newlD
» Trade-offs

* Performance impact minimized if this data is
completely in memory - fast seek

 Memory consumption minimized if this data is on-
disk - slow seek

« Conclusion: size of updates should be kept small

= Difficult to implement Near-Real-Time updates?
 Mapping table incr. updates, not full rebuilds

IIIIIIIIIII

43

... o be continued ...

= Evaluate the cost of runtime
re-mapping of ID-s and
random seeking

= Extend the design to support
multi-segment stacks

= Handle deletion of fields

IIIIIIIIIII

Current status

= LUCENE-3837
= Branch in Subversion — lucene3837
= Very early stage — experiments

= |nitial code for StackedCodec formats and
SegmentReader modifications

* Help needed!

IIIIIIIIIII

Summary & QA

= Codec APl in Lucene 4

= Some Codec applications: tee, filtering, splitting
http://issues.apache.org/jira/browse/LUCENE-2632

* Field-level index updates
- “Stacked” design, using adjacent segments
* ID mapping table

* Help needed!
http://issues.apache.org/jira/lbrowse/LUCENE-3837

* More questions? ab@lucidimagination.com

IIIIIIIIIII

Bonus slides

IIIIIIIIIII

TeeDirectory

Makes literal copies of Directory data
* As it's being created, byte by byte
Simple API:

Directory out = new TeeDirectory(main, others...);

Can exclude some files from copying, by prefix
 E.g.“ _0” —exclude all files of segment _0

Can perform initial sync

* Bulk copy from existing main directory to copies
Mirroring on the fly — more fine-grained than

commit-based replication
* Quicker convergence of copies with the main dir

IIIIIIIIIII

48

Sorted “stacked” updates

Changing and syncing ID-s on each update

(briefly)

IIIIIIIIIII

Sorted updates

» Essentially the ParallelReader approach
 Requires synchronized ID-s between segments
« Some data structures need “fillers” for absent ID-s

= Updates arrive out of order
« Updates initially get unsynced ID-s

* On flush of the segment with updates

 Multiple updates have to be collapsed into single
documents

* ID-s have to be remapped

 The “updates” segment has to be re-written
» [UCENE-2482 Index sorter — possible implementation

IIIIIIIIIII

50

Reading sorted updates

= A variant of ParallelReader

 If data is present both in the main and in the
secondary indexes, return the secondary data
and drop the main data

* Nearly no loss of performance or memory!

= But requires re-building and sorting (rewrite) of
the secondary segment on every update ®

» LUCENE-3837 uses the “unsorted” design, with
the ID mapping table and runtime re-mapping

IIIIIIIIIII

