
Is Your IndexReader Really
Atomic or Maybe Slow?

Uwe Schindler

SD DataSolutions GmbH,
uschindler@sd-datasolutions.de

1

My Background

• I am committer and PMC member of Apache Lucene and Solr. My
main focus is on development of Lucene Java.

• Implemented fast numerical search and maintaining the new
attribute-based text analysis API. Well known as Generics and
Sophisticated Backwards Compatibility Policeman.

• Working as consultant and software architect for SD DataSolutions
GmbH in Bremen, Germany. The main task is maintaining PANGAEA
(Publishing Network for Geoscientific & Environmental Data) where
I implemented the portal's geo-spatial retrieval functions with
Apache Lucene Core.

• Talks about Lucene at various international conferences like the
previous Berlin Buzzwords, Lucene Revolution, Lucene Eurocon,
ApacheCon EU/US, and various local meetups.

2

Agenda

• Motivation / History of Lucene

• AtomicReader & CompositeReader

• Reader contexts

• Wrap up

3

Lucene Index Structure

• Lucene was the first full text search engine
that supported document additions and
updates

• Snapshot isolation ensures consistency

 Segmented index structure

 Committing changes creates new segments

4

Segments in Lucene

• Each index consists of various segments
placed in the index directory. All documents
are added to new new segment files, merged with other
on-disk files after flushing.

5 *) The term “optimal” does not mean all indexes must be optimized!

Im
a

g
e:

 D
o

u
g

C
u

tt
in

g

Segments in Lucene

• Each index consists of various segments
placed in the index directory. All documents
are added to new new segment files, merged with other
on-disk files after flushing.

• Lucene writes segments incrementally and can merge
them.

6 *) The term “optimal” does not mean all indexes must be optimized!

Im
a

g
e:

 D
o

u
g

C
u

tt
in

g

Segments in Lucene

• Each index consists of various segments
placed in the index directory. All documents
are added to new new segment files, merged with other
on-disk files after flushing.

• Lucene writes segments incrementally and can merge
them.

• Optimized* index consists of one segment.

7 *) The term “optimal” does not mean all indexes must be optimized!

Im
a

g
e:

 D
o

u
g

C
u

tt
in

g

Lucene merges while indexing
all of English Wikipedia

8
Video by courtesy of:

Mike McCandless’ blog, http://goo.gl/kI53f

https://goo.gl/kI53f
https://goo.gl/kI53f
https://goo.gl/kI53f

Indexes in Lucene (up to version 3.6)

• Each segment (“atomic index”) is a completely
functional index:
– SegmentReader implements the IndexReader

interface for single segments

• Composite indexes
– DirectoryReader implements the IndexReader

interface on top of a set of SegmentReaders

– MultiReader is an abstraction of multiple
IndexReaders combined to one virtual index

9

Composite Indexes (up to version 3.6)

Atomic “views” on multi-segment index:
– Term Dictionary: on-the-fly merged & sorted term

index (priority queue for TermEnum,…)

– Postings: posting lists for each term appended,
convert document IDs to be global

– Metadata: doc frequency, term frequency,…

– Stored fields, term vectors, deletions: delegate global
document IDs -> segment document IDs (binary
search)

– FieldCache: duplicate instances for single segments
and composite view (memory!!!)

10

Merging Term Index and Postings

Term 1

Term 2

Term 4

Term 7

Term 8

Term 9

Term 1

Term 3

Term 5

Term 6

Term 8

Term 9

Term 1

Term 2

Term 3

Term 4

Term 5

Term 6

Term 7

Term 8

Term 9

11

Merging Term Index and Postings

Term 1

Term 2

Term 4

Term 7

Term 8

Term 9

Term 1

Term 3

Term 5

Term 6

Term 8

Term 9

Term 1

Term 2

Term 3

Term 4

Term 5

Term 6

Term 7

Term 8

Term 9

12

Composite Indexes (up to version 3.6)

Atomic “views” on multi-segment index:
– Term Dictionary: on-the-fly merged & sorted term

index (priority queue for TermEnum,…)

– Postings: posting lists for each term appended,
convert document IDs to be global

– Metadata: doc frequency, term frequency,…

– Stored fields, term vectors, deletions: delegate
global document IDs -> segment document IDs
(binary search)

– FieldCache: duplicate instances for single
segments and composite view (memory!!!)

13

Searching before Version 2.9

• IndexSearcher used the underlying index
always as a “single” (atomic) index:
– Queries are executed on the atomic view of a

composite index

– Slowdown for queries that scan term dictionary
(MultiTermQuery) or hit lots of documents,
facetting
=> recommendation to “optimize” index

– On every index change, FieldCache used for
sorting had to be reloaded completely

14

Im
a

g
e: ©

 Th
e W

alt D
isn

ey C
o

m
p

an
y

Lucene 2.9 and later:

Per segment search

Search is executed separately on each index segment:

Atomic view no longer used!

15

Per Segment Search: Pros

• No live term dictionary merging

• Possibility to parallelize

– ExecutorService in IndexSearcher since Lucene 3.1+

– Do not optimize to make this work!

• Sorting only needs per-segment FieldCache

– Cheap reopen after index changes!

• Filter cache per segment

– Cheap reopen after index changes!

16

Per Segment Search: Cons

• Query/Filter API changes:
– Scorer / Filter’s DocIdSet no longer use global

document IDs

• Slower sorting by string terms
– Term ords are only comparable inside each

segment

– String comparisons needed after segment
traversal

– Use numeric sorting if possible!!!
(Lucene supports missing values since version 3.4 [buggy], corrected 3.5+)

17

Agenda

• Motivation / History of Lucene

• AtomicReader & CompositeReader

• Reader contexts

• Wrap up

18

Composite Indexes (up to version 3.6)

Atomic “views” on multi-segment index:
– Term Dictionary: on-the-fly merged & sorted term

index (priority queue for TermEnum,…)

– Postings: posting lists for each term appended,
convert document IDs to be global

– Metadata: doc frequency, term frequency,…

– Stored fields, term vectors, deletions: delegate global
document IDs -> segment document IDs (binary
search)

– FieldCache: duplicate instances for single segments
and composite view (memory!!!)

19

Composite Indexes (version 4.0)

Atomic “views” on multi-segment index:
– Term Dictionary: on-the-fly merged & sorted term

index (priority queue for TermEnum,…)

– Postings: posting lists for each term appended,
convert document IDs to be global

– Metadata: doc frequency, term frequency,…

– Stored fields, term vectors, deletions: delegate global
document IDs -> segment document IDs (binary
search)

– FieldCache: duplicate instances for single segments
and composite view (memory!!!)

20

Early Lucene 4.0

• Only “historic” IndexReader interface
available since Lucene 1.0

• 80% of all methods of composite IndexReaders
throwed UnsupportedOperationException
– This affected all user-facing APIs

(SegmentReader was hidden / marked experimental)

• No compile time safety!
– Query Scorers and Filters need term dictionary and

postings, throwing UOE when executed on composite
reader

21

Im
a

g
e:

 ©
 T

h
e

W
al

t
D

is
n

ey
 C

o
m

p
an

y

Heavy Committing™ !!!

22

Im
a

g
e:

 ©
 T

h
e

W
al

t
D

is
n

ey
 C

o
m

p
an

y

IndexReader

• Most generic (abstract) API to an index
– superclass of more specific types
– cannot be subclassed directly (no public constructor)

23

IndexReader

• Most generic (abstract) API to an index
– superclass of more specific types
– cannot be subclassed directly (no public constructor)

• Does not know anything about “inverted index” concept
– no terms, no postings!

24

IndexReader

• Most generic (abstract) API to an index
– superclass of more specific types
– cannot be subclassed directly (no public constructor)

• Does not know anything about “inverted index” concept
– no terms, no postings!

• Access to stored fields (and term vectors) by document ID
– to display / highlight search results only!

25

IndexReader

• Most generic (abstract) API to an index
– superclass of more specific types
– cannot be subclassed directly (no public constructor)

• Does not know anything about “inverted index” concept
– no terms, no postings!

• Access to stored fields (and term vectors) by document ID
– to display / highlight search results only!

• Some very limited metadata
– number of documents,…

26

IndexReader

• Most generic (abstract) API to an index
– superclass of more specific types
– cannot be subclassed directly (no public constructor)

• Does not know anything about “inverted index” concept
– no terms, no postings!

• Access to stored fields (and term vectors) by document ID
– to display / highlight search results only!

• Some very limited metadata
– number of documents,…

• Unmodifiable: No more deletions / changing of norms possible!
– Applies to all readers in Lucene 4.0 !!!

27

IndexReader

• Most generic (abstract) API to an index
– superclass of more specific types
– cannot be subclassed directly (no public constructor)

• Does not know anything about “inverted index” concept
– no terms, no postings!

• Access to stored fields (and term vectors) by document ID
– to display / highlight search results only!

• Some very limited metadata
– number of documents,…

• Unmodifiable: No more deletions / changing of norms possible!
– Applies to all readers in Lucene 4.0 !!!

 Passed to IndexSearcher
 just as before!

28

IndexReader

• Most generic (abstract) API to an index
– superclass of more specific types
– cannot be subclassed directly (no public constructor)

• Does not know anything about “inverted index” concept
– no terms, no postings!

• Access to stored fields (and term vectors) by document ID
– to display / highlight search results only!

• Some very limited metadata
– number of documents,…

• Unmodifiable: No more deletions / changing of norms possible!
– Applies to all readers in Lucene 4.0 !!!

 Passed to IndexSearcher
 just as before!

• Allows IndexReader.open() for backwards compatibility (deprecated)

29

AtomicReader

• Inherits from IndexReader

30

AtomicReader

• Inherits from IndexReader

• Access to “atomic” indexes (single segments)

31

AtomicReader

• Inherits from IndexReader

• Access to “atomic” indexes (single segments)

• Full term dictionary and postings API

32

AtomicReader

• Inherits from IndexReader

• Access to “atomic” indexes (single segments)

• Full term dictionary and postings API

33

AtomicReader

• Inherits from IndexReader

• Access to “atomic” indexes (single segments)

• Full term dictionary and postings API

• Access to DocValues (new in Lucene 4.0) and
norms

34

CompositeReader

• No additional functionality on top of
IndexReader

35

CompositeReader

• No additional functionality on top of
IndexReader

• Provides getSequentialSubReaders() to
retrieve all child readers

36

CompositeReader

• No additional functionality on top of
IndexReader

• Provides getSequentialSubReaders() to
retrieve all child readers

• DirectoryReader and MultiReader implement
this class

37

DirectoryReader

• Abstract class, defines interface for:

38

DirectoryReader

• Abstract class, defines interface for:
– access to on-disk indexes (on top of Directory class)
– access to commit points, index metadata, index

version, isCurrent() for reopen support
– defines abstract openIfChanged (for cheap reopening

of indexes)
– child readers are always AtomicReader instances

39

DirectoryReader

• Abstract class, defines interface for:
– access to on-disk indexes (on top of Directory class)

– access to commit points, index metadata, index version,
isCurrent() for reopen support

– defines abstract openIfChanged (for cheap reopening of
indexes)

– child readers are always AtomicReader instances

• Provides static factory methods for opening indexes
– well-known from IndexReader in Lucene 1 to 3

– factories return internal DirectoryReader implementation
(StandardDirectoryReader with SegmentReaders as childs)

40

Basic Search Example

Looks familiar, doesn’t it?

41

Im
a

g
e:

 ©
 T

h
e

W
al

t
D

is
n

ey
 C

o
m

p
an

y

“Arrgh! I still need terms and postings on my
DirectoryReader!!! What should I do? Optimize
to only have one segment? Help me please!!!”

(example question on java-user@lucene.apache.org)

42

What to do?

• Calm down

• Take a break and drink a beer*

• Don’t optimize / force merge your index!!!

43 *) Robert’s solution

Solutions

• Most efficient way:

– Retrieve atomic leaves from your composite:
reader.getTopReaderContext().leaves()

– Iterate over sub-readers, do the work
(possibly parallelized)

– Merge results

44

Solutions

• Most efficient way:

– Retrieve atomic leaves from your composite:
reader.getTopReaderContext().leaves()

– Iterate over sub-readers, do the work
(possibly parallelized)

– Merge results

• Otherwise: wrap your CompositeReader:

45

(Slow) Solution

• Wraps IndexReaders of any kind as atomic reader,
providing terms, postings, deletions, doc values
– Internally uses same algorithms like previous Lucene readers
– Segment-merging uses this to merge segments, too

46

AtomicReader

 SlowCompositeReaderWrapper.wrap(IndexReader r)

(Slow) Solution

• Wraps IndexReaders of any kind as atomic reader,
providing terms, postings, deletions, doc values
– Internally uses same algorithms like previous Lucene readers
– Segment-merging uses this to merge segments, too

• Solr always provides an AtomicReader for convenience
through SolrIndexSearcher. Plugin writers should use:

47

AtomicReader

 SlowCompositeReaderWrapper.wrap(IndexReader r)

AtomicReader

 rd = mySolrIndexSearcher.getAtomicReader()

Other readers

• FilterAtomicReader

– Was FilterIndexReader in 3.x
(but now solely works on atomic readers)

– Allows to filter terms, postings, deletions

– Useful for index splitters (e.g., PKIndexSplitter,
MultiPassIndexSplitter)
(provide own getLiveDocs() method, merge to IndexWriter)

• ParallelAtomicReader, -CompositeReader

48

IndexReader Reopening

• Reopening solely provided by directory-based
DirectoryReader instances

49

IndexReader Reopening

• Reopening solely provided by directory-based
DirectoryReader instances

• No more reopen for:

– AtomicReader: they are atomic, no refresh possible

– MultiReader: reopen child readers separately, create
new MultiReader on top of reopened readers

– Parallel*Reader, FilterAtomicReader: reopen
wrapped readers, create new wrapper afterwards

50

Agenda

• Motivation / History of Lucene

• AtomicReader & CompositeReader

• Reader contexts

• Wrap up

51

WTF ?!?

IndexReaderContext

AtomicReaderContext

CompositeReaderContext

52

The Problem

53

Doc0

Doc1

Doc2

Doc3

Doc0

Doc1

Doc2

Doc3

Doc0

Doc1

Doc2

Doc3

Atomic0 Atomic1 Atomic2

CompositeA:
DirectoryReader

Doc0

Doc1

Doc2

Doc3

Doc0

Doc1

Doc2

Doc3

Doc0

Doc1

Doc2

Doc3

Atomic0 Atomic1 Atomic2

CompositeB:
DirectoryReader

SuperComposite: MultiReader

The Problem

54

Doc0

Doc1

Doc2

Doc3

Doc4

Doc5

Doc6

Doc7

Doc8

Doc9

Doc10

Doc11

Atomic0 Atomic1 Atomic2

CompositeA:
DirectoryReader

Doc0

Doc1

Doc2

Doc3

Doc0

Doc1

Doc2

Doc3

Doc0

Doc1

Doc2

Doc3

Atomic0 Atomic1 Atomic2

CompositeB:
DirectoryReader

SuperComposite: MultiReader

The Problem

55

Doc0

Doc1

Doc2

Doc3

Doc4

Doc5

Doc6

Doc7

Doc8

Doc9

Doc10

Doc11

Atomic0 Atomic1 Atomic2

CompositeA:
DirectoryReader

Doc12

Doc13

Doc14

Doc15

Doc16

Doc17

Doc18

Doc19

Doc20

Doc21

Doc22

Doc23

Atomic0 Atomic1 Atomic2

CompositeB:
DirectoryReader

SuperComposite: MultiReader

Solution

• Each IndexReader instance provides:
IndexReaderContext getTopReaderContext()

56

Solution

• Each IndexReader instance provides:
IndexReaderContext getTopReaderContext()

• The context provides a “view” on all childs (direct
descendants) and leaves (down to lowest level
AtomicReaders)

57

Solution

• Each IndexReader instance provides:
IndexReaderContext getTopReaderContext()

• The context provides a “view” on all childs (direct
descendants) and leaves (down to lowest level
AtomicReaders)

• Each atomic leave has a docBase (document ID
offset)

58

Solution

• Each IndexReader instance provides:
IndexReaderContext getTopReaderContext()

• The context provides a “view” on all childs (direct
descendants) and leaves (down to lowest level
AtomicReaders)

• Each atomic leave has a docBase (document ID offset)

• IndexSearcher passes a context instance relative to its
own top-level reader to each Query-Scorer / Filter
– allows to access complete reader tree up to the current top-

level reader

– Allows to get the “global” document ID

59

Agenda

• Motivation / History of Lucene

• AtomicReader & CompositeReader

• Reader contexts

• Wrap up

60

Summary

• Lucene moved from global searches to per-
segment search in Lucene 2.9

• Up to Lucene 3.6 indexes are still accessible on
any hierarchy level with same interface

• Lucene 4.0 will split the IndexReader class into
several abstract interfaces

• IndexReaderContexts will support per-segment
search preserving top-level document IDs

62

Contact
Uwe Schindler

uschindler@apache.org
http://www.thetaphi.de

 @thetaph1

SD DataSolutions GmbH
Wätjenstr. 49

28213 Bremen, Germany
+49 421 40889785-0

http://www.sd-datasolutions.de

66

mailto:uschindler@apache.org
https://www.thetaphi.de/
https://www.sd-datasolutions.de/
https://www.sd-datasolutions.de/
https://www.sd-datasolutions.de/

