Is Your IndexReader Really
Atomic or Maybe Slow?

Uwe Schindler

SD DataSolutions GmbH,
uschindler@sd-datasolutions.de

My Background

| am committer and PMC member of Apache Lucene and Solr. My
main focus is on development of Lucene Java.

Implemented fast numerical search and maintaining the new
attribute-based text analysis API. Well known as Generics and
Sophisticated Backwards Compatibility Policeman.

Working as consultant and software architect for SD DataSolutions
GmbH in Bremen, Germany. The main task is maintaining PANGAEA
(Publishing Network for Geoscientific & Environmental Data) where
| implemented the portal's geo-spatial retrieval functions with
Apache Lucene Core.

Talks about Lucene at various international conferences like the
previous Berlin Buzzwords, Lucene Revolution, Lucene Eurocon,
ApacheCon EU/US, and various local meetups.

Agenda

Motivation / History of Lucene
AtomicReader & CompositeReader
Reader contexts

Wrap up

Lucene Index Structure

* Lucene was the first full text search engine
that supported document additions and

updates

* Snapshot isolation ensures consistency

—> Segmented index structure

—> Committing changes creates new segments

Image: Doug Cutting

* Each index consists of various segments
placed in the index directory. All documents
are added to new new segment files, merged with other
on-disk files after flushing.

*) The term “optimal” does not mean all indexes must be optimized!

Image: Doug Cutting

* Each index consists of various segments
placed in the index directory. All documents
are added to new new segment files, merged with other
on-disk files after flushing.

. jc_ﬁcene writes segments incrementally and can merge
em.

*) The term “optimal” does not mean all indexes must be optimized!

Image: Doug Cutting

* Each index consists of various segments
placed in the index directory. All documents
are added to new new segment files, merged with other
on-disk files after flushing.

. jc_ﬁcene writes segments incrementally and can merge
em.

* Optimized* index consists of one segment.

*) The term “optimal” does not mean all indexes must be optimized!

Lucene merges while indexing
all of English Wikipedia

1 GB

500 MB

0 sec

4.1 MB

1 segs; _0O

0.0 MB merging
0.0 MB merged

100 MB

50 MB
10 MB

Video by courtesy of:
Mike McCandless’ blog, http://goo.gl/kI53f

https://goo.gl/kI53f
https://goo.gl/kI53f
https://goo.gl/kI53f

Indexes in Lucene (up to version 3.6)

e Each segment (“atomic index”) is a completely
functional index:

— SegmentReader implements the IndexReader
interface for single segments

 Composite indexes

— DirectoryReader implements the IndexReader
interface on top of a set of SegmentReaders

— MultiReader is an abstraction of multiple
IndexReaders combined to one virtual index

Composite Indexes (up to version 3.6)

Atomic “views” on multi-segment index:

— Term Dictionary: on-the-fly merged & sorted term
index (priority queue for TermEnum,...)

— Postings: posting lists for each term appended,
convert document IDs to be global

Merging Term Index and Postings

Term 1

Term 3

Term 5

Term 6

Term 1 E
Term 2 gﬂLg
Term 4 gﬂg
Term 7 E
Term 8 @”
Term9 gﬂLg

Term 8

Term 9

HREERE R

Term 1 E @T
Term 2 @5
Term 3 Eﬁ?
Term 4 @5
Term 5 @5
Term 6 éﬂ_g
Term 7 Eﬂﬁ
Term 8 @5 E
Term 9 E aﬁ

11

Merging Term Index and Postings

Term 1

Term 3

Term 5

Term 6

Term 1 E
Term 2 gﬂLg
Term 4 gﬂg
Term 7 E
Term 8 @”
Term9 gﬂLg

Term 8

Term 9

HREERE R

Term 1 E @T
Term 2 @5
Term 3 Eﬁ?
Term 4 @5
Term 5 @5
Term 6 éﬂ_g
Term 7 Eﬂﬁ
Term 8 @5 E
Term 9 E aﬁ

12

Composite Indexes (up to version 3.6)

Atomic “views” on multi-segment index:

— Term Dictionary: on-the-fly merged & sorted term
index (priority queue for TermEnum,...)

— Postings: posting lists for each term appended,
convert document IDs to be global

— Metadata: doc frequency, term frequency,...

— Stored fields, term vectors, deletions: delegate
global document IDs -> segment document IDs
(binary search)

— FieldCache: duplicate instances for single
segments and composite view (memory!!!)

Searching before Version 2.9

* |IndexSearcher used the underlying index
always as a “single” (atomic) index:

— Queries are executed on the atomic view of a
composite index

— Slowdown for queries that scan term dictionary
(MultiTermQuery) or hit lots of documents,
facetting
=>recommendation to “optimize” index

— On every index change, FieldCache used for
sorting had to be reloaded completely

Auedwo) Asusiq yem Yyl O :abbwy

Lucene 2.9 and later:
Per segment search

Search is executed separately on each index segment:

public void search({Weight weight, Collector collector) throws IQException {
f/f iterate through all segment readers & execute the search
for (int 1 = 8; i < subReaders.length; i++) {
// pass the reader to the collector
collector.setMextReader(subReaders[i], docStarts[i]);

final Scorer scorer = ...}
if (scorer != null) { // score documents on this segment

scorer.score(collector);

b
b
h

Atomic view no longer used!

15

Per Segment Search: Pros

No live term dictionary merging

Possibility to parallelize
— ExecutorService in IndexSearcher since Lucene 3.1+
— Do not optimize to make this work!

Sorting only needs per-segment FieldCache
— Cheap reopen after index changes!

Filter cache per segment
— Cheap reopen after index changes!

Per Segment Search: Cons

* Query/Filter APl changes:

— Scorer / Filter’s DocldSet no longer use global
document IDs

* Slower sorting by string terms

— Term ords are only comparable inside each
segment

— String comparisons needed after segment
traversal

— Use numeric sorting if possiblel!!!

(Lucene supports missing values since version 3.4 [buggy], corrected 3.5+)

Agenda

Motivation / History of Lucene
AtomicReader & CompositeReader
Reader contexts

Wrap up

18

Composite Indexes (up to version 3.6)

Atomic “views” on multi-segment index:

— Term Dictionary: on-the-fly merged & sorted term
index (priority queue for TermEnum,...)

— Postings: posting lists for each term appended,
convert document IDs to be global

— Metadata: doc frequency, term frequency,...

— Stored fields, term vectors, deletions: delegate global
document IDs -> segment document IDs (binary
search)

— FieldCache: duplicate instances for single segments
and composite view (memory!!!)

Composite Indexes (version 4.0)

EvomE “views” on multi-segment index:
— Term Dictim:erged & sorted term
index (prio ue Enum,...)
— Postings: p*h term appended,
convert do global
— Metadata: doc frequency, ter=Bra@&ency,...

— Stored fields, term vectors, Z@wdEESS: delegate global
document IDs -> segment document IDs (binary
search)

— FieldCache es for single segments

oo
and compo*y!!!)

20

Image: © The Walt Disney Company

Early Lucene 4.0

* Only “historic” IndexReader interface
available since Lucene 1.0

e 80% of all methods of composite IndexReaders
throwed UnsupportedOperationException

— This affected all user-facing APIs
(SegmentReader was hidden / marked experimental)

* No compile time safety!

— Query Scorers and Filters need term dictionary and
postings, throwing UOE when executed on composite
reader

21

Image: © The Walt Disney Company

Heavy Committing™ !!

NEW IndexReader

* Most generic (abstract) APl to an index
— superclass of more specific types
— cannot be subclassed directly (no public constructor)

NEW IndexReader

* Most generic (abstract) APl to an index
— superclass of more specific types
— cannot be subclassed directly (no public constructor)

* Does not know anything about “inverted index” concept
— no terms, no postings!

NEW IndexReader

* Most generic (abstract) APl to an index
— superclass of more specific types
— cannot be subclassed directly (no public constructor)

* Does not know anything about “inverted index” concept
— no terms, no postings!

* Access to stored fields (and term vectors) by document ID
— to display / highlight search results only!

NEW IndexReader

Most generic (abstract) APl to an index
— superclass of more specific types
— cannot be subclassed directly (no public constructor)

Does not know anything about “inverted index” concept
— no terms, no postings!

Access to stored fields (and term vectors) by document ID
— to display / highlight search results only!

Some very limited metadata
— number of documents,...

New IndexReader

Most generic (abstract) APl to an index
— superclass of more specific types
— cannot be subclassed directly (no public constructor)

Does not know anything about “inverted index” concept
— no terms, no postings!

Access to stored fields (and term vectors) by document ID
— to display / highlight search results only!

Some very limited metadata
— number of documents,...

Unmodifiable: No more deletions / changing of norms possible!
— Applies to all readers in Lucene 4.0 !!!

27

New IndexReader

Most generic (abstract) APl to an index
— superclass of more specific types
— cannot be subclassed directly (no public constructor)

Does not know anything about “inverted index” concept
— no terms, no postings!

Access to stored fields (and term vectors) by document ID
— to display / highlight search results only!

Some very limited metadata
— number of documents,...

Unmodifiable: No more deletions / changing of norms possible!
— Applies to all readers in Lucene 4.0 !!!

Passed to IndexSearcher
just as before!

28

New IndexReader

Most generic (abstract) APl to an index
— superclass of more specific types
— cannot be subclassed directly (no public constructor)

Does not know anything about “inverted index” concept
— no terms, no postings!

Access to stored fields (and term vectors) by document ID
— to display / highlight search results only!

Some very limited metadata
— number of documents,...

Unmodifiable: No more deletions / changing of norms possible!
— Applies to all readers in Lucene 4.0 !!!

Passed to IndexSearcher
just as before!

Allows IndexReader.open() for backwards compatibility (deprecated)

29

NEW AtomicReader

* Inherits from IndexReader

NEW AtomicReader

* Inherits from IndexReader

e Access to “atomic” indexes (single segments)

NEW AtomicReader

* Inherits from IndexReader
e Access to “atomic” indexes (single segments)

* Full term dictionary and postings API

AtomicReader

<< FieldsEnum ==

<< TermsEnum ==

Field:Title Field:Content
<< DocsEnum >=>
brown
fox [[doc-1, doc-3, doc-7, ..]
knights l A
M
of =
-
quick 1 L'E
round ; E
table 98 8
o
the v
A

NEW AtomicReader

* Inherits from IndexReader
e Access to “atomic” indexes (single segments)
* Full term dictionary and postings API

e Access to DocValues (new in Lucene 4.0) and
norms

NEW CompositeReader

* No additional functionality on top of
IndexReader

NEW CompositeReader

* No additional functionality on top of
IndexReader

* Provides getSequentialSubReaders() to
retrieve all child readers

NEW CompositeReader

* No additional functionality on top of
IndexReader

* Provides getSequentialSubReaders() to
retrieve all child readers

* DirectoryReader and MultiReader implement
this class

NEW DirectoryReader

* Abstract class, defines interface for:

NEW DirectoryReader

* Abstract class, defines interface for:
— access to on-disk indexes (on top of Directory class)

— access to commit points, index metadata, index
version, isCurrent() for reopen support

— defines abstract openlfChanged (for cheap reopening
of indexes)

— child readers are always AtomicReader instances

NEW DirectoryReader

* Abstract class, defines interface for:

— access to on-disk indexes (on top of Directory class)

— access to commit points, index metadata, index version,
isCurrent() for reopen support

— defines abstract openlfChanged (for cheap reopening of
indexes)

— child readers are always AtomicReader instances

* Provides static factory methods for opening indexes
— well-known from IndexReader in Lucene 1 to 3

— factories return internal DirectoryReader implementation
(StandardDirectoryReader with SegmentReaders as childs)

Image: © The Walt Disney Company

Basic Search Example

DirectoryReader reader = DirectoryReader.open(directory);
IndexSearcher searcher = new IndexSearcher(reader);

Query query = new QueryParser("fieldname", analyzer).parse(“text™);
TopDocs hits = searcher.search(query, 18);
ScorelDoc[] docs = hits.scoreDocs;

Document docl = searcher.doc({docs[8].doc);

ff alternative:

Document doc? = reader.document(docs[1].doc);

Looks familiar, doesn’t it?

41

“Arrgh! | still need terms and postings on my
DirectoryReader!!! What should | do? Optimize
to only have one segment? Help me please!!l!”

(example question on java-user@lucene.apache.org)

What to do?

e Calm down
e Take a break and drink a beer*

* Don’t optimize / force merge your index!!!

BEERS!

.

*) Robert’s solution

43

Solutions

* Most efficient way:

— Retrieve atomic leaves from your composite:
reader.getTopReaderContext () . leaves ()

— lterate over sub-readers, do the work
(possibly parallelized)

— Merge results

44

Solutions

* Most efficient way:

— Retrieve atomic leaves from your composite:

reader.getTopReaderContext () . leaves ()

— lterate over sub-readers, do the work
(possibly parallelized)

— Merge results

* Otherwise: wrap your CompositeReader:

45

(slow) Solution

AtomicReader
SlowCompositeReaderWrapper.wrap (IndexReader r)

* Wraps IndexReaders of any kind as atomic reader,
providing terms, postings, deletions, doc values

— Internally uses same algorithms like previous Lucene readers
— Segment-merging uses this to merge segments, too

46

(slow) Solution

AtomicReader
SlowCompositeReaderWrapper.wrap (IndexReader r)

* Wraps IndexReaders of any kind as atomic reader,
providing terms, postings, deletions, doc values

— Internally uses same algorithms like previous Lucene readers
— Segment-merging uses this to merge segments, too

* Solr always provides an AtomicReader for convenience
through SolrindexSearcher. Plugin writers should use:

AtomicReader
rd = mySolrIndexSearcher.getAtomicReader ()

Other readers

* FilterAtomicReader

— Was FilterIndexReader in 3.x
(but now solely works on atomic readers)

— Allows to filter terms, postings, deletions

— Useful for index splitters (e.g., PKIndexSplitter,
MultiPassindexSplitter)

(provide own getliveDocs() method, merge to IndexWriter)

* ParallelAtomicReader, -CompositeReader

IndexReader Reopening

* Reopening solely provided by directory-based
DirectoryReader instances

IndexReader Reopening

* Reopening solely provided by directory-based
DirectoryReader instances

* No more reopen for:
— AtomicReader: they are atomic, no refresh possible

— MultiReader: reopen child readers separately, create
new MultiReader on top of reopened readers

— Parallel*Reader, FilterAtomicReader: reopen
wrapped readers, create new wrapper afterwards

Agenda

Motivation / History of Lucene
AtomicReader & CompositeReader
Reader contexts

Wrap up

51

IndexReaderContext
AtomicReaderContext
CompositeReaderContext

WTF ?!?

52

The Problem

SuperComposite: MultiReader

CompositeA:

DirectoryReader

AtomicO Atomicl Atomic2

CompositeB:

DirectoryReader

AtomicO Atomicl Atomic2

DocO || DocO || DocO
Docl || Docl || Docl
Doc2 || Doc2 || Doc2
Doc3 || Doc3 || Doc3

DocO || DocO || DocO
Docl || Docl || Docl
Doc2 || Doc2 || Doc2
Doc3 || Doc3 || Doc3

53

The Problem

SuperComposite: MultiReader

CompositeB:
DirectoryReader

AtomicO Atomicl Atomic2

DocO DocO DocO

Docl Docl Docl

Doc2 Doc2 Doc2

Doc3 Doc3 Doc3

54

The Problem

CompositeA:
DirectoryReader

AtomicO Atomicl Atomic2

CompositeB:
DirectoryReader

AtomicO Atomicl Atomic2

DocO Doc4

Doc8

Docl12 Docl6 Doc20

Docl Doc5

Doc9

Docl13 Docl7 Doc21

Doc2 Doc6b

Doc10

Docl4 Docl18 Doc22

Doc3 Doc7

Docl1l

Docl15 Docl19 Doc23

55

Solution

 Each IndexReader instance provides:
IndexReaderContext getTopReaderContext ()

Solution

* Each IndexReader instance provides:
IndexReaderContext getTopReaderContext ()

 The context provides a “view” on all childs (direct
descendants) and leaves (down to lowest level

AtomicReaders)

Solution

 Each IndexReader instance provides:
IndexReaderContext getTopReaderContext ()

* The context provides a “view” on all childs (direct

descendants) and leaves (down to lowest level
AtomicReaders)

* Each atomic leave has a docBase (document ID
offset)

Solution

Each IndexReader instance provides:
IndexReaderContext getTopReaderContext ()

The context provides a “view” on all childs (direct
descendants) and leaves (down to lowest level
AtomicReaders)

Each atomic leave has a docBase (document ID offset)

IndexSearcher passes a context instance relative to its
own top-level reader to each Query-Scorer / Filter

— allows to access complete reader tree up to the current top-
level reader

— Allows to get the “global” document ID

Agenda

Motivation / History of Lucene
AtomicReader & CompositeReader
Reader contexts

Wrap up

60

Summary

Lucene moved from global searches to per-
segment search in Lucene 2.9

Up to Lucene 3.6 indexes are still accessible on
any hierarchy level with same interface

Lucene 4.0 will split the IndexReader class into
several abstract interfaces

IndexReaderContexts will support per-segment
search preserving top-level document IDs

Contact

Uwe Schindler
uschindler@apache.org
http://www.thetaphi.de

 @thetaphl

@d ata

SD DataSolutions GmbH
Watjenstr. 49
28213 Bremen, Germany
+49 421 40889785-0
http://www.sd-datasolutions.de

mailto:uschindler@apache.org
https://www.thetaphi.de/
https://www.sd-datasolutions.de/
https://www.sd-datasolutions.de/
https://www.sd-datasolutions.de/

